If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=15x+4.9x^2
We move all terms to the left:
100-(15x+4.9x^2)=0
We get rid of parentheses
-4.9x^2-15x+100=0
a = -4.9; b = -15; c = +100;
Δ = b2-4ac
Δ = -152-4·(-4.9)·100
Δ = 2185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{2185}}{2*-4.9}=\frac{15-\sqrt{2185}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{2185}}{2*-4.9}=\frac{15+\sqrt{2185}}{-9.8} $
| 36^x=6^-1 | | 221=-y+45 | | -7x+4=-9x | | 2c+7+1c=-14+3c+12 | | 2(-5)+5y=5 | | -u+264=76 | | 5(x+6)^2=60 | | 233=140-x | | 6(x-10)=57-7x | | x-0.35x=279.5 | | 6y+30=4(y+8) | | x2−2x−35=0 | | 3(4x-5)=4(2x+6 | | 0=4x^2-6x-4 | | 12-1/2x=x | | x-0.2x=344 | | 21/7=h/42 | | 5b^2(b^2-4)=63-46b^2 | | 43=2u+17 | | 16t-t6^3=0 | | (2x-9)4=10x | | 5v+10=110 | | 2x(x+3)-(x+2)^2=0 | | -3/5u-8/3=-5/2 | | 14=2(1-2k)+5(8-2k) | | 7x-25+6x=54 | | 2m-m/7=-6 | | -1.3=-3.5w+1.2 | | 11(x-5)=10(x+511) | | 6x+2x-13=11 | | 11(x-5)=10(x+5 | | -3.5u-8.3=-5.2 |